

Correction to "Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism"

Ali Darwiche, Cyril Marino, Moulay T. Sougrati, Bernard Fraisse, Lorenzo Stievano, and Laure Monconduit*

J. Am. Chem. Soc.2012, 134, 20805–20811. DOI: 10.1021/ja310347x

Page 20806. The theoretical capacity of Sb is 660 mAh g^{-1} and not 610 mAh g^{-1} , as was wrongly indicated at the end of the Introduction section.

Page 20810. The following statement in the Conclusion section is incorrect: "This might be partially due to decreased volume expansion upon going from Sb (181.1 Å³) to hexagonal Na₃Sb (237 Å³) compared to rock salt Li₃Sb (283.8 Å³)." In fact, for the Sb metal lattice, Z = 6, and thus the average volume occupied by one Sb atom is about 30 Å³. The exact values of volume expansion are 3.9 for hexagonal Na₃Sb (237 Å³, Z = 2 and thus 118.5 Å³ per Sb atom) and 2.4 for rock salt Li₃Sb (V = 283.3 Å³, Z = 4 and thus 71 Å³ per Sb). Therefore, the lattice expansion is larger in Na than in Li systems, in contradiction with the cited sentence. We regret this error, which was provoked by a wrong value of Z reported in the lattice parameters taken from our commonly used crystal structure database.

